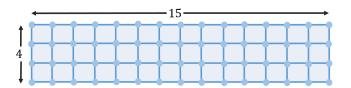
November 2, 2017

Algorithm Theory - Winter Term 2017/2018 Exercise Sheet 2

Hand in by Thursday 10:15, November 16, 2017

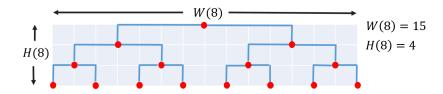
Exercise 1: Tree Embedding into Grids (4+6 Points)

A $n \times m$ grid graph is a graph $G = (V_G, E_G)$ with nodes $V_G := \{(i, j) \mid i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}\}$. These nodes are embedded in the Euclidian plane \mathbb{R}^2 and connected with edges as exemplified by the following 4×15 grid graph.



An embedding of a tree $T = (V_T, E_T)$ into a grid graph $G = (V_G, E_G)$ is defined as a one to one mapping of V_T to a subset of V_G , which satisfies the following condition. There exists a set P_G of vertex-disjoint paths¹ in G such that for each $\{u, v\} \in E_T$, there is a path $p \in P_G$ connecting u' to v', when u is mapped to u', and v is mapped to v'.

(a) We can embed a complete binary tree with n leaves into a grid, such that the nodes with height i of the tree are placed in the i^{th} row of the grid. Below you see the embedding of a tree with 8 leaves into a 4×15 grid as an example.



By this way of embedding, show that we need a grid of size² $\Theta(n \log n)$ to embed a complete tree with *n* leaves. To do so, write down the recurrence relations for the width W(n) and the height H(n) of the grid.

(b) Find a more efficient way of embedding a complete binary tree and show that it needs a grid of size $\Theta(n)$, if the tree has n leaves. Write down the recurrence relations for the width W(n) and the height H(n) of the grid.

¹We define vertex-disjoint paths in G as paths that may only have common endpoints but are disjoint otherwise.

²The size of a $n \times m$ grid graph is simply $n \cdot m$.

Exercise 2: Polynomial to the power of k

Given a polynomial p(x) of degree n and an integer $k \ge 2$, the goal of this problem is to compute the k^{th} power $p^k(x)$ of p(x) in an efficient way. For simplicity, we assume that k is a power of 2, that is, $k = 2^{\ell}$ for some integer $\ell \ge 1$.

- (a) Describe an efficient algorithm to compute $p^k(x)$ polynomial using the Fast Polynomial Multiplication algorithm from the lecture.
- (b) What is the asymptotic runtime of your algorithm in terms of k and n? Explain your answer.

Exercise 3: Greedy Algorithm

In the following, a *unit fraction* is a fraction where the numerator is 1 and the denominator is some integer larger than 1. For example 1/4 or 1/384 are unit fractions.

It is well-known that every rational number 0 < q < 1 can be expressed as a sum of pairwise distinct unit fractions, e.g., we can write $\frac{4}{13}$ as

$$\frac{4}{13} = \frac{1}{5} + \frac{1}{13} + \frac{1}{32} + \frac{1}{65}.$$

Interestingly such a decomposition into distinct unit fractions can be computed using a simple greedy algorithm.

In the following, assume that you are given two positive integers a and b such that b > a. Design a greedy algorithm to compute integers $0 < c_1 < c_2 < \cdots < c_k$ such that

$$\frac{a}{b} = \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_k}.$$

Prove that your greedy algorithm always works and that it decomposes $\frac{a}{b}$ into at most a unit fractions.

You can assume that your algorithm can deal with arbitrarily large integer numbers. Note that for the fraction $\frac{4}{13}$, the standard greedy algorithm computes a decomposition which is different from the one given above.

Exercise 4: Matroids

(6+4 Points)

(a) For a graph G = (V, E), a subset $F \subseteq E$ of the edges is called a forest iff (if and only if) it does not contain a cycle. Let \mathcal{F} be the set of all forests of G. Show that (E, \mathcal{F}) is a matroid.

Hint: A forest with k edges and n nodes has n - k connected components.

(b) For a matroid (E, I), a maximal independent set $S \in I$ is an independent set that cannot be extended. Thus, for every element $e \in E \setminus S$, the set $S \cup \{e\} \notin I$.

What are the maximal independent sets of the matroid in (a)?

(10 Points)